Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.390
Filter
1.
Data Brief ; 54: 110357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623544

ABSTRACT

This article presents comprehensive data derived from lab-scale batch anaerobic digesters that were subjected to inhibition by various sources of ammonia. To counter this inhibition, zeolite was introduced into selected digesters. The provided dataset offers a detailed depiction of degradation performance dynamics over time, as well as insights into both microbial and metabolic changes during the inhibition. In detail, 10 conditions were tested in triplicate. In a first series of 15 bioreactors ammonia was introduced to achieve a TAN concentration of 8 g/L, utilizing NH3 solution, NH4Cl salt, (NH4)2CO3 salt, or (NH4)2PO4 salt as inhibitors. A control condition without ammonia was also set up. A second series of 15 bioreactors was set up exactly as the first one, with the addition of zeolite at a concentration of 15 g/L. The data provided includes information on operational conditions, degradation performance measurements throughout the entire process (using biogas production and composition, dissolved organic and inorganic carbon, volatile fatty acids, pH, free and total ammonia nitrogen, apparent isotopic fractionation of biogas as indicators), microbial community analysis using 16S rRNA gene sequencing (50 samples analysed), and metabolomic analysis through liquid chromatography-mass spectrometry (LC-MS) (108 samples analysed). Sequencing data were generated by using IonTorrent PGM sequencer. The sequencing data have been deposited with links to project PRJEB52324, in ENA database from EBI (https://www.ebi.ac.uk/ena/browser/view/PRJEB52324). Sample accession numbers go from SAMEA14277573 to SAMEA14277621. The metabolomic data were generated using an LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, MA, US). The metabolomic data have been deposited to the EMBL-EBI MetaboLights database with the identifier MTBLS7859 (https://www.ebi.ac.uk/metabolights/MTBLS7859). This data can be used as a source for comparisons with other studies focusing on the inhibition of anaerobic digestion by ammonia, particularly in the context of exploring microbial or metabolomic dynamics during inhibition. Additionally it provides a multi-omic dataset (metataxonomic and metabolomic) with detailed associated metadata describing anaerobic digesters. The dataset is directly is associated to the research article titled "Inhibition of anaerobic digestion by various ammonia sources resulted in subtle differences in metabolite dynamics." [1].

2.
Heliyon ; 10(8): e29356, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644898

ABSTRACT

Landfills play a key role as greenhouse gas (GHGs) emitters, and urgently need assessment and management plans development to swiftly reduce their climate impact. In this context, accurate emission measurements from landfills under different climate and management would reduce the uncertainty in emission accounting. In this study, more than one year of long-term high-frequency data of CO2 and CH4 fluxes were collected in two Italian landfills (Giugliano and Case Passerini) with contrasting management (gas recovery VS no management) using eddy covariance (EC), with the aim to i) investigate the relation between climate drivers and CO2 and CH4 fluxes at different time intervals and ii) to assess the overall GHG balances including the biogas extraction and energy recovery components. Results indicated a higher net atmospheric CO2 source (5.7 ± 5.3 g m2 d-1) at Giugliano compared to Case Passerini (2.4 ± 4.9 g m2 d-1) as well as one order of magnitude higher atmospheric CH4 fluxes (6.0 ± 5.7 g m2 d-1 and 0.7 ± 0.6 g m2 d-1 respectively). Statistical analysis highlighted that fluxes were mainly driven by thermal variables, followed by water availability, with their relative importance changing according to the time-interval considered. The rate of change in barometric pressure (dP/dt) influenced CH4 patterns and magnitude in the classes ranging from -1.25 to +1.25 Pa h-1, with reduction when dP/dt > 0 and increase when dP/dt < 0, whilst a clear pattern was not observed when all dP/dt classes were analyzed. When including management, the total atmospheric GHG balance computed for the two landfills of Giugliano and Case Passerini was 174 g m2 d-1 and 79 g m2 d-1 respectively, of which 168 g m2 d-1 and 20 g m2 d-1 constituted by CH4 fluxes.

3.
Membranes (Basel) ; 14(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38668108

ABSTRACT

In recent years, the use of biogas as a natural gas substitute has gained great attention. Typically, in addition to methane (CH4), biogas contains carbon dioxide (CO2), as well as small amounts of impurities, e.g., hydrogen sulfide (H2S), nitrogen (N2), oxygen (O2) and volatile organic compounds (VOCs). One of the latest trends in biogas purification is the application of membrane processes. However, literature reports are ambiguous regarding the specific requirement for biogas pretreatment prior to its upgrading using membranes. Therefore, the main aim of the present study was to comprehensively examine and discuss the most recent achievements in the use of single-membrane separation units for biogas upgrading. Performing a literature review allowed to indicate that, in recent years, considerable progress has been made on the use of polymeric membranes for this purpose. For instance, it has been documented that the application of thin-film composite (TFC) membranes with a swollen polyamide (PA) layer ensures the successful upgrading of raw biogas and eliminates the need for its pretreatment. The importance of the performed literature review is the inference drawn that biogas enrichment performed in a single step allows to obtain upgraded biogas that could be employed for household uses. Nevertheless, this solution may not be sufficient for obtaining high-purity gas at high recovery efficiency. Hence, in order to obtain biogas that could be used for applications designed for natural gas, a membrane cascade may be required. Moreover, it has been documented that a significant number of experimental studies have been focused on the upgrading of synthetic biogas; meanwhile, the data on the raw biogas are very limited. In addition, it has been noted that, although ceramic membranes demonstrate several advantages, experimental studies on their applications in single-membrane systems have been neglected. Summarizing the literature data, it can be concluded that, in order to thoroughly evaluate the presented issue, the long-term experimental studies on the upgrading of raw biogas with the use of polymeric and ceramic membranes in pilot-scale systems are required. The presented literature review has practical implications as it would be beneficial in supporting the development of membrane processes used for biogas upgrading.

4.
Article in English | MEDLINE | ID: mdl-38629710

ABSTRACT

Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a ß-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.

5.
Heliyon ; 10(6): e28221, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38560681

ABSTRACT

The metagenomic approach stands as a powerful technique for examining the composition of microbial communities and their involvement in various anaerobic digestion (AD) systems. Understanding the structure, function, and dynamics of microbial communities becomes pivotal for optimizing the biogas process, enhancing its stability and improving overall performance. Currently, taxonomic profiling of biogas-producing communities relies mainly on high-throughput 16S rRNA sequencing, offering insights into the bacterial and archaeal structures of AD assemblages and their correlations with fed substrates and process parameters. To delve even deeper, shotgun and genome-centric metagenomic approaches are employed to recover individual genomes from the metagenome. This provides a nuanced understanding of collective functionalities, interspecies interactions, and microbial associations with abiotic factors. The application of OMICs in AD systems holds the potential to revolutionize the field, leading to more efficient and sustainable waste management practices particularly through the implementation of precision anaerobic digestion systems. As ongoing research in this area progresses, anticipations are high for further exciting developments in the future. This review serves to explore the current landscape of metagenomic analyses, with focus on advancing our comprehension and critically evaluating biases and recommendations in the analysis of microbial communities in anaerobic digesters. Its objective is to explore how contemporary metagenomic approaches can be effectively applied to enhance our understanding and contribute to the refinement of the AD process. This marks a substantial stride towards achieving a more comprehensive understanding of anaerobic digestion systems.

6.
Waste Manag ; 181: 1-10, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38564968

ABSTRACT

The growing use of anaerobic co-digestion (AcoD) in processing organic waste has led to a significant digestate production. To effectively recycle digestate back into soils, it is crucial to understand how operational variables in the AcoD process influence the conversion of organic matter (OM). To address this, a combination of biochemical fractionation and various soil incubation tests were employed to assess the stability of OM in digestates generated from anaerobic continuous reactors fed with a food waste-hay mixture and operating at different hydraulic retention times (HRT) and organic loading rates (OLR). This study revealed that digester performance and operating parameters impacted carbon dynamics in soils. A decrease in the carbon mineralization in soils when increasing the HRT was reported (48 ± 4 % for 70 days compared to 59 ± 1 % for 42 days). Specific HRT and OLR values were found to be linked to carbon accessibility and complexity, confirming that longer HRT lead to higher OM removal and increased complexity in soluble OM, despite minor discrepancies in relative carbon distribution. Furthermore, comparable rates of nitrogen mineralization in soils were observed for all digestates, consistent with the accessibility of nitrogen from the particulate OM. Nevertheless, AcoD converted substrates with the potential to immobilize nitrogen in soils into fast-acting fertilizers. In summary, this study underscores the importance of controlling the AcoD performances to evaluate the suitability of digestates for sustainable agricultural practices.

7.
Article in English | MEDLINE | ID: mdl-38570431

ABSTRACT

The impact of biogas residual biochar (BRB) on the humification and carbon balance process of co-composting of hog slurry (HGS) and wheat straw (WTS) was examined. The 50-day humification process was significantly enhanced by the addition of BRB, particular of 5% BRB, as indicated by the relatively higher humic acid content (67.28 g/kg) and humification ratio (2.31) than other treatments. The carbon balance calculation indicated that although BRB addition increased 22.16-46.77% of C lost in form of CO2-C, but the 5% BRB treatment showed relatively higher C fixation and lower C loss than other treatments. In addition, the BRB addition reshaped the bacterial community structure during composting, resulting in increased abundances of Proteobacteria (25.50%) during the thermophilic phase and Bacteroidetes (33.55%) during the maturation phase. Combined these results with biological mechanism analysis, 5% of BRB was likely an optimal addition for promoting compost humification and carbon fixation in practice.

8.
J Environ Manage ; 358: 120902, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38657411

ABSTRACT

Poorly managed faecal sludge (FS) poses significant challenges to public health and the environment. Anaerobic digestion (AD) of FS provides an effective method for energy recovery while reducing FS associated threats. Recognizing the critical role of the dewatering process before AD, this study investigates the synergistic application of chemical coagulation and mesophilic AD for synthetic FS treatment. FeCl3, AlCl3, Fe2(SO4)3, poly ferric sulfate (PFS) and poly aluminium ferric chloride (PAFC) were utilized at varying dosages to examine their impact on FS properties and subsequent biogas production from the dewatered FS. It was found that coagulation enhances sedimentation efficiencies and dewaterability through mechanisms such as charge neutralization, charge patching and bridging, thereby improving the FS feasibility for AD. Notably, polymer coagulant PFS showed good performance in balancing pollutant removal and methane recovery, contributing to facilitating the hydrolysis and acidogenesis microorganisms involved in the AD process. Optimal dosage was identified at 150 mg/g TS (1.7 g/L FS), achieving prominent removal efficiencies for total COD (67%), turbidity (85%), and total phosphorus (60%), while simultaneously enhancing AD performance with specific CH4 production reaching 517 ml CH4/g VS or 24.8 ml CH4/g AD wet feedstock compared to 309 ml CH4/g VS or 2.7 ml CH4/g AD wet feedstock in untreated FS.

9.
Waste Manag ; 181: 114-127, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608526

ABSTRACT

In this study, phenolic compounds using deep eutectic solvents (DES) were extracted from cork dust, and the biogas production potential of DES-treated cork dust samples was determined. The DES treatment was carried out using choline chloride and formic acid (1:2 M ratio) at various temperatures (90, 110 and 130 °C) and treatment times (20, 40 and 60 min) at a solid-to-solvent ratio of 1:10 g mL-1. The highest total phenolic content (137 mg gallic acid equivalent (GAE) g-1 dry cork dust) was achieved at 110 °C/20 min. The extracts exhibited an antioxidant capacity of up to 56.3 ± 3.1 % 1,1-diphenyl-2-picrylhydazyl (DPPH) inhibition at a dilution rate of 100. DES treatment resulted in minimal sugar solubilization at low temperatures, while approximately 42 % of the xylan fraction in the biomass degraded under severe conditions (e.g., 130 °C/60 min). Catechin, 4-hydroxybenzoic acid and gallic acid were the major phenolics in DES extracts. The biogas yield of DES-treated cork dust increased with treatment severity. The highest biogas yield (115.1mLN gVS-1) was observed at 130 °C/60 min, representing an increase of 125 % compared to the untreated sample. SEM images revealed that the surface structure of the samples became smoother after mild pretreatment and rougher after harsh pretreatment. Compositional and FTIR analyses indicated that a higher biogas formation potential was associated with increased cellulose content in the substrate, which could be attributed to hemicellulose solubilization in the hydrolysate. Overall, DES pretreatment effectively enhanced phenol extraction and anaerobic degradability.

10.
Plant Signal Behav ; 19(1): 2336724, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38600704

ABSTRACT

Biostimulants are obtained from various sources like plants, animals, microorganisms, and industrial by-products as well as waste material. Their utilization in agriculture practices is being increased that is giving positive results. The purpose of the current study was to use plant-derived smoke (SMK) solution and biogas digestate (BGD) slurry as biostimulant to elucidate their impact on potato (Solanum tuberosum) performance. The experiment was conducted in lab as well as field conditions, and SMK and BGD solutions were prepared in varying concentrations such as SMK 1:500, SMK 1:250, BGD 50:50, and BGD 75:25. Foliar applications were performed thrice during experiments and data were collected related to photosynthesis, growth, pigments, and genome-wide methylation profiling. Net photosynthesis rate (A) and water use efficiency (WUE) were found higher in SMK- and BGD-treated lab and field grown plants. Among pigments, BGD-treated plants depicted higher levels of Chl a and Chl b while SMK-treated plants showed higher carotenoid levels. Alongside, enhancement in growth-related parameters like leaf number and dry weight was also observed in both lab- and field-treated plants. Furthermore, DNA methylation profile of SMK- and BGD-treated plants depicted variation compared to control. DNA methylation events increased in all the treatments compared to control except for SMK 1:500. These results indicate that smoke and slurry both act as efficient biostimulants which result in better performance of plants. Biostimulants also affected the genome-wide DNA methylation profile that resultantly might have changed the plant gene expression profiling and played its role in plant responsiveness to these biostimulants. However, there is need to elucidate a possible synergistic effect of SMK and BGD on plant growth along with gene expression profiling.


Subject(s)
Smoke , Solanum tuberosum , Animals , Solanum tuberosum/metabolism , Biofuels , Photosynthesis , Methylation
11.
Bioresour Bioprocess ; 11(1): 8, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38647842

ABSTRACT

Generally wastewater such agricultural runoff is considered a nuisance; however, it could be harnessed as a potential source of nutrients like nitrates and phosphates in integrated biorefinery context. In the current study, microalgae Chlorella sp. S5 was used for bioremediation of agricultural runoff and the leftover algal biomass was used as a potential source for production of biofuels in an integrated biorefinery context. The microalgae Chlorella sp. S5 was cultivated on Blue Green (BG 11) medium and a comprehensive optimization of different parameters including phosphates, nitrates, and pH was carried out to acquire maximum algal biomass enriched with high lipids content. Dry biomass was quantified using the solvent extraction technique, while the identification of nitrates and phosphates in agricultural runoff was carried out using commercial kits. The algal extracted lipids (oils) were employed in enzymatic trans-esterification for biodiesel production using whole-cell biomass of Bacillus subtilis Q4 MZ841642. The resultant fatty acid methyl esters (FAMEs) were analyzed using Fourier transform infrared (FTIR) spectroscopy and gas chromatography coupled with mass spectrometry (GC-MS). Subsequently, both the intact algal biomass and its lipid-depleted algal biomass were used for biogas production within a batch anaerobic digestion setup. Interestingly, Chlorella sp. S5 demonstrated a substantial reduction of 95% in nitrate and 91% in phosphate from agricultural runoff. The biodiesel derived from algal biomass exhibited a noteworthy total FAME content of 98.2%, meeting the quality standards set by American Society for Testing and Materials (ASTM) and European union (EU) standards. Furthermore, the biomethane yields obtained from whole biomass and lipid-depleted biomass were 330.34 NmL/g VSadded and 364.34 NmL/g VSadded, respectively. In conclusion, the findings underscore the potent utility of Chlorella sp. S5 as a multi-faceted resource, proficiently employed in a sequential cascade for treating agricultural runoff, producing biodiesel, and generating biogas within the integrated biorefinery concept.

12.
Article in English | MEDLINE | ID: mdl-38625464

ABSTRACT

Comprehensive and proper management of fecal sludge (FS) is an ongoing concern in many nations. Decentralized fecal sludge treatment plants (FSTPs) are effective in this regard; however, many have experienced strong public opposition based partly on suspicion of malodor. Fecal sludge and freshly generated fecal matter (FM) samples from various FSTPs were collected, characterized, and investigated for biomethane potential. The homogenized samples were anaerobically digested for 28 days. Digestion successfully reduced total suspended solids, biochemical oxygen demand, and threshold odor number values of 97,350-97,420 mg/l, 43,230-43,260 mg/l, and 130-150 for FM, to 49,500-49,650 mg/l, 23,760-23,850 mg/l, and 3338, respectively, for FS samples. The comprehensive gas yield from Bhongir, Boduppal, and Shadnagar FS samples was 40, 55, and 31 ml, respectively. In contrast, cumulative gas generation from the FM was 26,361 ml. Digestion of FS samples also reduced concentrations of volatile solids and coliforms by 66-72% and 99%, respectively. Characterization of gas samples revealed methane and carbon dioxide concentrations as 56% and 22% for FM, and 0.4% and 61% for FS samples, respectively. Hydrogen sulfide and ammonia gas were absent in FS samples, dispelling common societal misconceptions of FSTPs being associated with malodor.

13.
Article in English | MEDLINE | ID: mdl-38625472

ABSTRACT

The cost and efficiency of an algal-BS treatment system are determined by the specific microalgal species and BS pretreatment method. This study examines the growth of a novel algae Chlorella sp. YSD-2 and the removal of nutrients from the BS using different pretreatment methods, including dilution ratio and sterilization. The highest biomass production (1.84 g L-1) was achieved in the 1:2 unsterilized biogas slurry, which was 2.03 times higher than that in the sterilized group, as well as higher lipid productivity (17.29 mg L-1 d-1). Nevertheless, the sterilized biogas slurry at a 1:1 dilution ratio exhibited the most notable nutrient-removal efficiency, with COD at 71.97%, TP at 91.32%, and TN at 88.80%. Additionally, the analysis of 16S rRNA sequencing revealed a significant alteration in the indigenous bacterial composition of the biogas slurry by microalgal treatment, with Proteobacteria and Cyanobacteria emerging as the predominant phyla, and unidentified_Cyanobacteria as the primary genus. These findings suggest that Chlorella sp. YSD-2 exhibits favorable tolerance and nutrient-removal capabilities in unsterilized, high-strength biogas slurry, along with high productivity of biomass and lipids. Consequently, these results offer a theoretical foundation for the development of an efficient and economically viable treatment method for algal-BS.

14.
Article in English | MEDLINE | ID: mdl-38625470

ABSTRACT

The establishment of sulfate (SO42-) reduction during methanogenesis may considerably hinder the efficient energetic exploitation of methane, once removing sulfide from biogas is obligate and can be costly. In addition, sulfide generation can negatively impact the performance of methanogens by triggering substrate competition and sulfide inhibition. This study investigated the impacts of removing SO42- during fermentation on the performance of a second-stage methanogenic continuous reactor (R2), comparing the results with those obtained in a single-stage system (R1) fed with SO42--rich wastewater (SO42- of up to 400 mg L-1, COD/SO42- of 3.12-12.50). The organic load (OL) was progressively increased to 5.0 g COD d-1 in both reactors, showing completely discrepant performances. Sulfate-reducing bacteria outperformed methanogens in the consumption for organic matter during the start-up phase (OL = 2.5 g COD d-1) in R1, directing up to 73% of the electron flow to SO42- reduction. An efficient methanogenic activity was established in R1 only after decreasing the OL to 0.625 g COD d-1, after which methanogenesis prevailed by consuming ca. 90% of the removed COD. Nevertheless, high sulfide proportions (up to 3.1%) were measured in biogas. Conversely, methanogenesis was promptly established in R2, resulting in a methane-rich (> 80%) and sulfide-free biogas regardless of the operating condition. From an economic perspective, processing the biogas evolved from R2 would be cheaper, although the techno-economic impacts of managing the sulfur pollution in the fermentative reactor still need to be understood.

15.
Bioresour Technol ; 400: 130665, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582235

ABSTRACT

Biogas production through anaerobic digestion (AD) is one of the complex non-linear biological processes, wherein understanding its dynamics plays a crucial role towards process control and optimization. In this work, a machine learning based biogas predictive model was developed for high solid systems using algorithms, including SVM, ET, DT, GPR, and KNN and two different datasets (Dataset-1:10, Dataset-2:5 inputs). Support Vector Machine had the highest accuracy (R2) of all the algorithms at 91 % (Dataset-1) and 87 % (Dataset-2), respectively. The statistical analysis showed that there was no significant difference (p = 0.377) across the datasets, wherein with less inputs, accurate results could be predicted. In case of biogas yield, the critical factors which affect the model predictions include loading rate and retention time. The developed high solid machine learning model shows the possibility of integrating Artificial Intelligence to optimize and control AD process, thus contributing to a generic model for enhancing the overall performance of the biogas plant.

16.
Bioresour Technol ; 400: 130673, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38583676

ABSTRACT

The ubiquitous use of volatile siloxanes in a myriad of product formulations has led to a widespread distribution of these persistent contaminants in both natural ecosystems and wastewater treatment plants. Microbial degradation under microaerobic conditions is a promising approach to mitigate D4 and D5 siloxanes while recovering energy in wastewater treatment plants. This study examined D4/D5 siloxanes biodegradation under both anaerobic and microaerobic conditions ( [Formula: see text]  = 0, 1, 3 %) using wastewater sludge. Results show that the use of microaeration in an otherwise strictly anaerobic environment significantly enhances siloxane conversion to methane. 16S rRNA gene sequencing identified potential degraders, including Clostridium lituseburense, Clostridium bifermentans and Synergistales species. Furthermore, chemical analysis suggested a stepwise siloxane conversion preceding methanogenesis under microaerobic conditions. This study demonstrates the feasibility of microaerobic siloxane biodegradation, laying groundwork for scalable removal technologies in wastewater treatment plants, ultimately highlighting the importance of using bio-based approaches in tackling persistent pollutants.

17.
Heliyon ; 10(5): e27136, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463763

ABSTRACT

Proper application of a fertilizer requires precise knowledge of its nutrient composition. In the case of liquid organic manures (LOM), this information is often lacking due to heterogeneous nature of these fertilizers. Published "book values" of nutrient contents present the average from a wide range of possible nutrient characteristics, but usually differ considerably from the concentration in a particular manure. Thus, chemical analyses are recommended before applying the specific LOM. Unfortunately, this is usually too costly and time-intensive in practical farming. On-farm analysis by optical spectrometry in the visible and near-infrared (Vis-NIR) range is considered as an efficient alternative. However, calibration of Vis-NIR spectrometry for LOM is challenging as shown in many studies. One reason is LOMs' tendency to rapidly segregate into a fuzzy continuum with liquid and solid properties. By separating LOM into well-defined liquid and solid phases and measuring them separately, calibration of Vis-NIR spectrometry might be improved. In this study, the effects of four sample pre-treatment techniques on the prediction accuracy of macronutrients (N, P, K, Mg, Ca, S), micronutrients (B, Mn, Fe, Cu, Zn), dry matter and pH of LOM using visible and near infrared spectrometry were comprehensively investigated. The concentrations were referred either to wet basis or to dry matter basis. For the study, a total of 163 samples, separated in two similar LOM sets (pig, cattle, digestates), were either dried, filtered, or centrifuged and always compared to non-treated samples. The experiments demonstrate that in comparison to raw samples (Ø r2 = 0.85) neither filtering (Ø r2 = 0.76 for filtrates and Ø r2 = 0.71 for filter residues), centrifugation (Ø r2 = 0.59 for supernatants and Ø r2 = 0.79 for pellets), nor drying (Ø r2 = 0.74) revealed to be a helpful preparation step significantly improving prediction results, independent from referring to wet or dry basis concentrations.

18.
Sci Rep ; 14(1): 5075, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38429365

ABSTRACT

In the present study, three process parameters optimization were assessed as controlling factors for the biogas and biomethane generation from brown algae Cystoceira myrica as the substrate using RSM for the first time. The biomass amount, Co3O4NPs dosage, and digestion time were assessed and optimized by RSM using Box-Behnken design (BBD) to determine their optimum level. BET, FTIR, TGA, XRD, SEM, XPS, and TEM were applied to illustrate the Co3O4NPs. FTIR and XRD analysis established the formation of Co3O4NPs. The kinetic investigation confirmed that the modified model of Gompertz fit the research results satisfactorily, with R2 ranging between 0.989-0.998 and 0.879-0.979 for biogas and biomethane production, respectively. The results recommended that adding Co3O4NPs at doses of 5 mg/L to C. myrica (1.5 g) significantly increases biogas yield (462 mL/g VS) compared to all other treatments. The maximum biomethane generation (96.85 mL/g VS) was obtained with C. myrica at (0 mg/L) of Co3O4NPs. The impacts of Co3O4NPs dosages on biomethane production, direct electron transfer (DIET) and reactive oxygen species (ROS) were also investigated in detail. The techno-economic study results demonstrate the financial benefits of this strategy for the biogas with the greatest net energy content, which was 2.82 kWh with a net profit of 0.60 USD/m3 of the substrate and was produced using Co3O4NPs (5 mg/L).


Subject(s)
Cobalt , Nanoparticles , Oxides , Seaweed , Reactive Oxygen Species , Biofuels , Electrons
19.
Data Brief ; 53: 110201, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38435740

ABSTRACT

The article presents relevant data from a long-term field experiment in Norway, comparing anaerobically digested and undigested slurry from organically managed dairy cows since 2011. Both the undigested and digested slurry originated from the same herd of cows and heifers. The dataset includes chemical analyses of slurry, soil characteristics at plot level of pH, extractable nutrients, and loss on ignition; crop yields, botanical composition (some years), and plant mineral composition (some years). These data supplement the findings presented and discussed in the research article Anaerobic digestion of dairy cattle slurry - long-term effects on crop yields and chemical soil characteristics[1].

20.
Water Res ; 253: 121354, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38428359

ABSTRACT

DNA-based monitoring of microbial communities that are responsible for the performance of anaerobic digestion of sewage wastes has the potential to improve resource recoveries for wastewater treatment facilities. By treating sludge with propidium monoazide (PMA) prior to amplicon sequencing, this study explored how the presence of DNA from dead microbial biomass carried over with feed sludge may mislead process-relevant biomarkers, and whether primer choice impacts such assessments. Four common primers were selected for amplicon preparation, also to determine if universal primers have sufficient taxonomic or functional coverage for monitoring ecological performance; or whether two domain-specific primers for Bacteria and Archaea are necessary. Anaerobic sludges of three municipal continuously stirred-tank reactors in Victoria, Australia, were sampled at one time-point. A total of 240 amplicon libraries were sequenced on a Miseq using two universal and two domain-specific primer pairs. Untargeted metabolomics was chosen to complement biological interpretation of amplicon gene-based functional predictions. Diversity, taxonomy, phylogeny and functional potentials were systematically assessed using PICRUSt2, which can predict community wide pathway abundance. The two chosen universal primers provided similar diversity profiles of abundant Bacteria and Archaea, compared to the domain-specific primers. About 16 % of all detected prokaryotic genera covering 30 % of total abundances and 6 % of PICRUSt2-estimated pathway abundances were affected by PMA. This showed that dead biomass in the anaerobic digesters impacted DNA-based assessments, with implications for predicting active processes, such as methanogenesis, denitrification or the identification of organisms associated with biological foams. Hence, instead of running two sequencing runs with two different domain-specific primers, we propose conducting PMA-seq with universal primer pairs for routine performance monitoring. However, dead sludge biomass may have some predictive value. In principal component analysis the compositional variation of 239 sludge metabolites resembled that of 'dead-plus-alive' biomass, suggesting that dead organisms contributed to the potentially process-relevant sludge metabolome.


Subject(s)
Biological Monitoring , Sewage , Sewage/microbiology , Anaerobiosis , Bacteria/metabolism , Archaea/metabolism , DNA/metabolism , Victoria , Bioreactors/microbiology , Methane/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...